Multiple-Imputation Variance Estimation in Studies With Missing or Misclassified Inclusion Criteria
In observational studies using routinely collected data, a variable with a high level of missingness or misclassification may determine whether an observation is included in the analysis. In settings where inclusion criteria are assessed after imputation, the popular multiple-imputation variance estimator proposed by Rubin (“Rubin’s rules” (RR)) is biased due to incompatibility between imputation